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Abstract

This paper presents a deterministic optimization framework for a two-echelon Online-to-
Offline (O2O) supply chain composed of an unreliable manufacturer and a reliable retailer.
Customer demand is modeled as a function of selling price, green investment, and service-
improvement investment. The manufacturer produces at a controllable rate but only a fraction
of output is usable due to unreliability; shipments are further subject to transportation hazards
that damage a fraction of each delivery. The retailer employs a single-setup–multi-unequal-
increasing-delivery (SSMUID) policy, parameterized by a geometric ratio, to reduce average
inventory at the expense of increased shipment frequency, emission and transport costs. We
derive closed-form expressions for SSMUID shipment sizes and average inventory, present
the joint total cost (manufacturer + retailer), and reduce the decision problem via substitution.
First-order optimality conditions for price, investments, shipment shape and cycle time are
obtained and a full 5×5 Hessian matrix is constructed to provide a sufficient Hessian-based
global-optimality certificate under interpretable parameter conditions. Numerical experiments
compare single-delivery, equal-multi-delivery and SSMUID policies and provide sensitivity
analysis on reliability and hazard parameters. Results show that SSMUID reduces joint cost
under typical ranges and that manufacturing reliability and transportation hazards are the dom-
inant cost drivers.
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1. Introduction

In recent years, Online-to-Offline (O2O) retailing has transformed global supply chains by in-
tegrating online purchasing with offline fulfilment. This hybrid structure enables customers to
search, compare, and order products online while receiving physical delivery through offline lo-
gistics networks. The O2O model is increasingly preferred due to convenience, faster response
time, and omnichannel service experience. However, these advantages also introduce stringent
requirements on delivery reliability, fulfilment speed, and consistency across both online and
offline channels. Even minor disruptions in upstream production or downstream transportation
can lead to delayed fulfilment, customer dissatisfaction, and long-term reputation loss. As con-
sumer expectations continue to rise, robust O2O supply-chain strategies have become vital for
competitive success.

Manufacturing unreliability represents a significant challenge in O2O supply chains. Real-
world production processes are prone to machine breakdowns, quality inconsistency, work-in-
process delays, and other operational disturbances, resulting in the generation of defective or
unusable items. Prior research has highlighted the adverse effects of imperfect production sys-
tems and the importance of designing replenishment strategies that mitigate such disruptions
(Hota, 2020; Hota et al., 2024, 2022b). When unreliable output interacts with the stringent
delivery-performance expectations of O2O retailing, the consequences can be particularly se-
vere, leading to shortages, loss of goodwill, and increased reliance on costly emergency replen-
ishments.

Transportation hazards introduce another major source of risk. During shipment, prod-
ucts may be damaged, delayed, or lost due to uncertain environmental conditions, improper
handling, or inadequate logistics coordination. Such hazards not only reduce the quantity of
usable items reaching the retailer but also contribute to service deterioration, especially in O2O
systems where customers value speed and reliability. As shown in Hota et al. (2022b), trans-
portation losses can significantly distort inventory availability and complicate replenishment
planning. Designing shipment structures that both minimise risk exposure and reduce inven-
tory cost is therefore an essential component of O2O supply-chain management.

Environmental sustainability further influences consumer choices and supply-chain design.
Customers increasingly prefer products with lower environmental impact, prompting firms to
invest in green technologies, cleaner production processes, and low-emission logistics (Mishra
et al., 2020). At the same time, customer satisfaction in O2O settings is strongly shaped by
service quality, including delivery convenience, responsiveness, and communication. Prior
empirical evidence shows that home delivery, in-store pickup, and service-tier choices have
considerable impact on purchasing behaviour (Dey and Others, 2023; Choi et al., 2023). These
findings motivate the incorporation of both green investment and service-improvement invest-
ment into the demand structure of modern supply-chain models.

This paper integrates these important dimensions into a unified deterministic analytical
framework. We study a two-echelon O2O supply chain composed of one unreliable manufac-
turer and a reliable retailer operating under transportation hazards. The retailer adopts a single-
setup–multi-unequal-increasing-delivery (SSMUID) replenishment strategy, where shipment
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quantities follow a geometric progression. This delivery policy reduces holding cost but in-
creases shipment frequency and hence exposure to transportation hazard and carbon-emission
costs. Demand depends jointly on selling price, product greenness, and service investment,
reflecting modern O2O shopping behaviour. The total cost includes holding, production, setup,
emission, shortage, service-tier, green investment, service improvement, and unreliability costs.

A deterministic classical optimization problem is formulated to minimise the joint total cost
of the supply chain. Closed-form expressions are derived for effective production, shipment
structure, and SSMUID inventory dynamics. First-order optimality conditions are established
for pricing, green investment, service investment, production, shipment ratio, and cycle time.
To ensure mathematical validity of the solution, a Hessian-based convexity analysis is con-
ducted to identify conditions guaranteeing global optimality. Through a detailed numerical
study, we compare the proposed SSMUID policy with traditional single-delivery and equal-
delivery strategies. The results show that SSMUID can substantially reduce overall system
cost, particularly under low manufacturing reliability or high transportation hazard.

The remainder of the paper is organised as follows. Section 2 reviews the related literature.
Section 3 describes the problem environment, notation, and assumptions. Section 4 presents the
deterministic mathematical model. Section 5 develops the solution methodology and optimality
analysis. Section 6 provides a numerical illustration, and Section 7 reports a sensitivity analysis.
Section 8 concludes with key insights and directions for future research.

2. Literature review

Research on O2O supply chains, unreliable manufacturing, transportation hazards, green in-
vestment, and delivery policies has grown rapidly in recent years. This section synthesizes the
existing contributions and identifies the research gaps that motivate the present study (He et al.,
2018; Gallino and Moreno, 2014; Cao and Li, 2018).

2.1. O2O retailing, home delivery, and service strategies

The rapid expansion of Online-to-Offline (O2O) retailing has reshaped how customers interact
with sellers, requiring firms to deliver high service quality and fulfil orders through multiple
channels (Bai et al., 2018; He and Huang, 2019). Empirical studies show that home-delivery
convenience significantly affects customer perception and purchasing behaviour (Dey and Oth-
ers, 2023; Hwang and Kim, 2020). Service quality, fulfilment responsiveness, and delivery
reliability have emerged as essential differentiators in O2O competition, and retailers increas-
ingly rely on service investment to enhance customer experience (Li and Li, 2021; Xie and
Liang, 2022).

In a related work, Choi et al. (2023) examined servicing strategies under imperfect pro-
duction conditions within an O2O environment. Their analysis highlights the strong interde-
pendence between service levels, production reliability, and retailer profitability (Yan and Pei,
2020; Zhang et al., 2021). These insights suggest that service-level decisions and production
characteristics must be integrated into unified supply-chain models.
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2.2. Unreliable manufacturing and imperfect production

Unreliable or imperfect production systems have been widely studied because real-world manu-
facturing processes frequently generate defective items or experience disruption (Porteus, 1986;
Chakraborty and Giri, 2018). Classical models assume a constant defect rate or reliability pa-
rameter influencing usable output (Salameh and Jaber, 2000; Cheng and Wang, 2012). Hota
(2020) analysed unequal lot-size and variable transportation impacts under unreliable supply,
showing that production imperfection significantly increases overall cost.

In a related stream, Hota et al. (2022b) investigated transportation hazards combined with
unreliable manufacturing and established that risk during shipment amplifies the effects of un-
reliable production (Paul et al., 2014). Retail strategies under unequal shipment from imperfect
manufacturers were explored in Hota et al. (2024), demonstrating that shipment structure di-
rectly influences retailer cost and shortage behaviour (Banerjee and Giri, 2016). Furthermore,
reliability enhancement through smart technologies and distribution-robust modelling was ex-
amined in Hota et al. (2022a), reinforcing the importance of incorporating manufacturing un-
reliability explicitly into supply-chain decision models (Ivanov et al., 2021).

These works collectively show that unreliable production is a key factor that must be inte-
grated with logistics, pricing, and demand decisions in modern supply chains (Ketzenberg and
Metters, 2015).

2.3. Transportation hazards and logistics risks

Transportation risk—including loss, damage, and delay—plays a significant role in determin-
ing product availability at the retailer (Sheffi, 2005; Tang, 2006). Transportation hazard mod-
elling has been particularly relevant in perishable-goods logistics, e-commerce fulfilment, and
global supply chains (Blackhurst and Dunn, 2011; Snyder and Shen, 2016). As shown in Hota
et al. (2022b), hazard-induced losses affect inventory balance, shortage levels, and shipment
frequency, thereby influencing the total cost of the system.

However, the interaction between transportation hazards and multi-delivery shipment struc-
tures has not been sufficiently addressed in the literature (Chen and Xiao, 2019). Most classical
EOQ-type and lot-sizing models assume hazard-free logistics, which does not reflect real O2O
environments where shipments are frequent and demand variability is high (Giri and Bardhan,
2017).

2.4. Green investment and sustainable operations

Growing environmental consciousness has shifted consumer preference toward greener prod-
ucts (Chen, 2011). Green production and emission-conscious logistics are now strategic prior-
ities in manufacturing and retailing (Benjaafar et al., 2013). Mishra et al. (2020) incorporated
carbon-emission controls and waste management into supply-chain optimization, demonstrat-
ing that green investment can significantly influence costs and customer demand (Zhang and
Xu, 2020).

Similarly, environmental concerns affect the choice of shipment frequency because more
frequent deliveries typically generate higher fuel consumption and carbon emissions (Wang
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and Zhang, 2018). This motivates integrating green investment and logistic emission costs into
O2O models, especially when delivery policies like SSMUID encourage frequent shipments
(Du and Zhu, 2021).

2.5. Service investment and customer satisfaction

Customer satisfaction in O2O environments depends strongly on service quality, delivery re-
sponsiveness, and convenience (Parasuraman et al., 1988; Lim et al., 2021). Service-related
cost structures, such as tiered service levels (unpaid, partially paid, fully paid), influence both
customer choice and operational expenses (Liu and Wang, 2019). In retail supply chains, ser-
vice investment plays an important role in improving lead time, reducing customer waiting, and
strengthening competitive position (Mishra et al., 2024; Song and Zhao, 2020).

Despite its importance, service-improvement investment has not been jointly modelled with
transportation hazard, green investment, and imperfect manufacturing in a unified deterministic
framework (Ivanov, 2020).

2.6. Delivery policies and inventory strategies

Shipment structure is a crucial decision in supply-chain management (Banerjee, 1986). Al-
though equal-size multi-delivery policies are common, recent studies show that unequal deliv-
ery policies often reduce inventory cost and improve practical feasibility (Hill, 1997; Giri and
Dohi, 2015). Single-setup–multi-shipment strategies, particularly those with increasing ship-
ment sizes, reduce holding costs by delaying larger shipments toward the end of the cycle (Lee
and Kim, 2013).

However, only a few studies explore the combined effect of SSMUID delivery, unreliable
production, and transportation hazard (Hota et al., 2024). Classical models assume perfect
transportation and production, whereas modern O2O systems require more realistic policies
that consider risk at both manufacturing and logistics stages (Ivanov, 2021).

2.7. Summary of research gaps

From the above literature, several gaps are evident:

• No existing deterministic model simultaneously incorporates unreliable manufacturing,
transportation hazard, SSMUID delivery, and O2O demand.

• The joint influence of price, greenness, and service investment on O2O demand has not
been integrated with shipment-structure optimization.

• There is limited analytical work connecting delivery policies with hazard-induced losses
and reliability-driven production failures.

• Global optimality conditions for such integrated supply-chain models are rarely estab-
lished.
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The present work addresses these gaps by developing a unified deterministic classical op-
timization model, deriving structural optimality conditions, and establishing global convexity
using Hessian analysis.

3. Problem description, notation, and assumptions

This section presents the structure of the two-echelon Online-to-Offline (O2O) supply chain
under study, followed by a complete list of notation and modelling assumptions. The supply
chain consists of a single unreliable manufacturer supplying one reliable retailer who fulfils
orders placed by customers through an O2O platform. Both production unreliability and trans-
portation hazards influence product availability at the retailer, while customer demand depends
on selling price, green investment, and service-improvement investment. The retailer adopts a
single-setup–multi-unequal-increasing-delivery (SSMUID) replenishment strategy.

3.1. Problem description

The system operates in a cyclic manner with cycle length T . During each cycle, the manufac-
turer produces items at a controllable production rate r. Due to unreliability, only a proportion
α ∈ (0, 1) of the produced units is usable, and the remaining items incur an unreliability
penalty. After production, the usable quantity is shipped to the retailer in n deliveries fol-
lowing a geometric single-setup–multi-unequal-increasing-delivery (SSMUID) structure. Al-
though SSMUID reduces the retailer’s average inventory, it increases shipment frequency and
hence exposure to transportation hazards.

Transportation hazards occur during each shipment, causing a fraction η ∈ (0, 1) of each lot
to be damaged or lost. As a result, the retailer may receive fewer usable items than produced,
potentially generating shortages. Shortages are not backordered; instead, unmet demand results
in lost sales and a shortage penalty.

Customer demand in the O2O environment depends on three controllable factors: selling
price (P ), green investment (G), and service-improvement investment (S). The green invest-
ment represents the manufacturer’s effort to improve the environmental performance of the
product, while service-improvement investment enhances O2O service responsiveness. Addi-
tionally, the manufacturer provides three types of O2O service tiers—unpaid, partially paid,
and fully paid—with respective proportions affecting the per-unit service cost.

The objective of the study is to determine the optimal selling price, green investment, ser-
vice investment, production rate, cycle length, shipment structure parameters, and number of
deliveries that minimize the joint total cost of the manufacturer and retailer under deterministic
demand and hazard conditions.

3.2. Notation

Table 1 provides all symbols used in the modelling framework.
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Table 1: Notation used in the model

Symbol Meaning
P Selling price per unit
G Green investment level
S Service-improvement investment level
d Deterministic customer demand per cycle
a, b, θ, δ Demand parameters
T Cycle length
r Production rate
Qp = rT Total production in a cycle
α Manufacturer reliability (0 < α < 1)
Qe = αrT Usable (effective) production in a cycle
n Number of deliveries in the cycle
qi Quantity in the i-th delivery (q1 < · · · < qn)
l Geometric ratio for SSMUID deliveries (l > 1)
η Transportation hazard rate (0 < η < 1)
Qr = (1− η)Qe Usable quantity received by the retailer
Ls Lost sales (shortage) quantity
h Inventory holding cost per unit per cycle
cp Unit production cost
cs Setup cost per production cycle
ct Transportation cost per shipment
γ Carbon/emission cost per shipment
cg Green investment cost parameter
cse Service-improvement cost parameter
cusrv, c

p
srv, c

f
srv Service-tier costs (unpaid, partial, full)

pu, pp, pf Proportions of customers choosing each service tier
csh Shortage penalty cost per unit
Iavg Average inventory over the cycle
Ctotal Total system cost per cycle

3.3. Assumptions

The model is based on the following assumptions:

1. The supply chain handles a single product and operates under a cyclic replenishment
structure.

2. Customer demand is deterministic and depends on selling price, green investment, and
service investment according to:

d = a− bP + θ ln(1 +G) + δS.
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3. The manufacturer’s production process is imperfect; only a fraction α of produced items
is usable.

4. Shipments experience transportation hazards, and a fraction η of each shipment is dam-
aged or lost.

5. The retailer follows a geometric single-setup–multi-unequal-increasing-delivery (SSMUID)
policy:

qi = q1l
i−1, l > 1.

6. Lost sales occur when demand exceeds the usable quantity received; no backordering is
allowed.

7. Green investment and service-improvement investment are continuous decision variables
and influence demand and cost.

8. Manufacturer-side service tiers (unpaid, partial, full) contribute to a weighted per-unit
service cost:

Csrv = puc
u
srv + ppc

p
srv + pfc

f
srv.

9. The objective is to minimize the total cost of the supply chain per cycle.

These assumptions define a realistic O2O supply-chain environment involving unreliable
production, transportation hazards, customer-driven demand, and modern sustainability and
service considerations.

4. Mathematical model

This section formulates the deterministic mathematical model for the two-echelon O2O sup-
ply chain with an unreliable manufacturer, transportation hazards and a single-setup–multi-
unequal-increasing-delivery (SSMUID) policy. We present expressions for demand, produc-
tion, shipment structure, received quantity, inventory, shortage and the cost components for
the retailer and manufacturer. Finally the joint cost minimization problem is stated with the
constraints.

4.1. Demand

Customer demand (per unit time or per cycle as chosen consistently) is assumed to be a deter-
ministic function of price P , green investment G and service investment S:

d = D(P,G, S) = a− bP + θ ln(1 +G) + δS, (1)

with a, b, θ, δ > 0.
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4.2. Production and reliability

The manufacturer produces at controllable rate r during a cycle of length T , hence gross pro-
duction per cycle is

Qp = rT. (2)

Due to manufacturing unreliability only a fraction α ∈ (0, 1) of Qp is usable:

Qe = αQp = αrT. (3)

A linear penalty (or cost) associated with unreliability is captured by m(1 − α)rT (or equiva-
lently m1−α

α
Qe if desired).

4.3. SSMUID shipment structure

The usable quantity Qe is delivered to the retailer in n shipments with increasing (unequal)
sizes. We adopt a geometric parametrization:

qi = q1 l
i−1, i = 1, . . . , n, l > 1. (4)

Total delivered quantity equals usable production:

n∑
i=1

qi = Qe. (5)

From (4) and (5) we obtain the first-lot size

q1 = Qe
l − 1

ln − 1
. (6)

4.4. Transportation hazard and received quantity

Each shipment is subject to a transportation hazard (loss/damage) fraction η ∈ [0, 1). Thus the
expected total quantity received by the retailer in a cycle is

Qr = (1− η)
n∑

i=1

qi = (1− η)Qe. (7)

4.5. Shortage (lost sales)

Shortage (lost sales) in a cycle is the positive part of demand exceeding received quantity:

Ls = max{ 0, d−Qr }. (8)
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For optimization, we linearize Ls by introducing the decision variable Ls and the constraints

Ls ≥ d− (1− η)
n∑

i=1

qi, Ls ≥ 0. (9)

4.6. Cycle average inventory under SSMUID

Assume shipments arrive at equally spaced times within the cycle: ti = (i−1)∆ with ∆ = T/n.
Let

Si =
i∑

j=1

qj (i = 1, . . . , n)

be cumulative delivered quantity after the i-th shipment. The time-area of inventory over the
interval [ti, ti+1) equals ∫ ti+1

ti

(Si − dt) dt = Si∆− d
2
(t2i+1 − t2i ).

Summing over i and dividing by cycle length T gives the cycle average inventory:

Iavg =
1

T

n∑
i=1

(
Si∆− d

2
(t2i+1 − t2i )

)
=

1

n

n∑
i=1

Si − dT

2
. (10)

Using the geometric form qk+1 = q1l
k, the sum

∑n
i=1 Si can be written in closed form. Define

S1(l, n) :=
n−1∑
k=0

lk =
ln − 1

l − 1
, (11)

S2(l, n) :=
n−1∑
k=0

klk =
l − nln + (n− 1)ln+1

(1− l)2
(l ̸= 1). (12)

Then
n∑

i=1

Si = q1

n−1∑
k=0

(n− k)lk = q1
(
nS1(l, n)− S2(l, n)

)
.

Substituting q1 from (6) yields the affine representation

Iavg = A(l, n)Qe − dT

2
, (13)

where the inventory-shape coefficient A(l, n) is

A(l, n) =
l − 1

ln − 1
· nS1(l, n)− S2(l, n)

n
. (14)

(Practically, A(l, n) is evaluated numerically for given l, n.)
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4.7. Cost components

This subsection summarizes all cost terms included in the joint total cost of the manufac-
turer–retailer system. Each cost component reflects a specific operational or service-related
expense within the O2O supply chain.

Retailer Costs

(1) Holding cost. The retailer stores inventory during the cycle, and the associated cost is
proportional to the cycle-average inventory:

Chold
R = h Iavg.

(2) Transportation cost. Every shipment from the manufacturer incurs a fixed transportation
charge:

Ctrans
R = nct.

(3) Fuel/Emission cost. Frequent shipments raise carbon emissions and fuel usage, modeled
as:

Cemis
R = nγ.

(4) Shortage (lost-sales) penalty. If the received quantity after hazards is insufficient to meet
demand, a penalty is incurred:

Cshort
R = cshLs.

(5) Service provision cost. Customer service tiers (unpaid, partially paid, fully paid) incur
per-unit service expenses:

Csrv
R = dCsrv, Csrv = puc

u
srv + ppc

p
srv + pfc

f
srv.

(6) Service investment cost. Additional investment to enhance service level (e.g., reduce lead
time):

Cserv inv
R = cse S.

Manufacturer Costs

(7) Production cost. Manufacturing cost depends on the output level:

Cprod
M = cp rT = cp

Qe

α
.

(8) Setup cost. A fixed cost incurred once each production cycle:

Csetup
M = cs.
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(9) Green investment cost. Environmental investment made by the manufacturer:

Cgreen
M = cg G.

(10) Unreliability penalty. Loss or cost incurred due to defective/unusable output:

Crep
M = m(1− α)rT = m

1− α

α
Qe.

4.8. Joint total cost

Summing retailer and manufacturer components yields the joint total cost per cycle (objective
function):

Ctotal(P,G, S,Qe, T, l, n, Ls) = h
(
A(l, n)Qe − dT

2

)
+ n(ct + γ) + cshLs

+ dCsrv + cseS

+
cp Qe

α
+ cs + cgG+m

1− α

α
Qe, (15)

where d = D(P,G, S) and A(l, n) is given by (14).

4.9. Optimization problem

The deterministic joint cost minimization problem is:

min
P,G,S,Qe,T,l,n,Ls

Ctotal(P,G, S,Qe, T, l, n, Ls)

s.t. d = a− bP + θ ln(1 +G) + δS,

Qe = αrT (or treat Qe as independent and r = Qe

αT
),

q1 = Qe
l − 1

ln − 1
, qi = q1l

i−1, i = 1, . . . , n,

Ls ≥ d− (1− η)Qe, Ls ≥ 0,

q1 > 0, l > 1, n ∈ Z+, P,G, S,Qe, T ≥ 0.

(16)

Remarks:

• If shortages are explicitly allowed in the objective (via cshLs), the optimizer chooses Qe

(hence r or T ) to trade off production/holding and shortage costs.

• For practical computation, one often fixes integer n and solves the continuous nonlinear
program in variables (P,G, S,Qe, T, l, Ls); then perform a search over feasible n.

• The model can incorporate cost-sharing between manufacturer and retailer by splitting
the transport/emission/service investment terms using a parameter λ when required.
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5. Solution Methodology

This section presents a classical optimization approach for minimizing the joint total cost of
the O2O supply chain. The objective is to determine optimal price P , green investment G,
service investment S, production quantity (via rT ), shipment pattern l, and cycle length T .
To simplify the problem and obtain tractable optimality conditions, we perform a systematic
variable reduction followed by analytical differentiation and Hessian-based global optimality
verification.

5.1. Step 1: Variable reduction

The manufacturer’s effective good output is

Qe = αrT.

The SSMUID structure imposes

n∑
i=1

qi = Qe, qi = q1l
i−1.

Using the geometric sum,

q1 = Qe
l − 1

ln − 1
.

The retailer receives
Qr = (1− η)Qe.

To avoid shortages, the minimum feasible output satisfying Qr ≥ d is

Q∗
e =

d

1− η
. (17)

Thus the decision variable Qe can be replaced by d through

Qe =
d

1− η
, rT =

Qe

α
=

d

α(1− η)
.

Hence, total cost becomes a function of

(P,G, S, l, T ),

while Qe and rT are eliminated.

5.2. Step 2: Substitution into cost function

Substituting (17) into the cost components, the cycle-average inventory becomes

Iavg = A(l, n)Qe −
dT

2
=

A(l, n)d

1− η
− dT

2
.
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Thus the total cost reduces to

C(P,G, S, l, T ) = h

(
A(l, n)d

1− η
− dT

2

)
+ n(ct + γ) + cs + cshmax{0, d−Qr}

+ dCsrv + cseS + cgG+ (cp +m(1− α))
d

α(1− η)
. (18)

Since Qr = (1 − η)Qe = d, shortages vanish and the shortage cost term is zero in the
non-shortage regime.

5.3. Step 3: First-order optimality conditions

Demand function:
d = a− bP + θ ln(1 +G) + δS.

We compute the derivatives of C with respect to each variable.

Derivative with respect to P .
∂d

∂P
= −b.

Thus
∂C

∂P
= −b

[
h

(
A(l, n)

1− η
− T

2

)
+ Csrv +

cp +m(1− α)

α(1− η)

]
.

The optimal P ∗ satisfies

∂C

∂P
= 0 ⇒ optimal price equates marginal demand loss to marginal cost saving.

Derivative with respect to G.
∂d

∂G
=

θ

1 +G
.

Hence
∂C

∂G
=

θ

1 +G

[
h

(
A(l, n)

1− η
− T

2

)
+ Csrv +

cp +m(1− α)

α(1− η)

]
+ cg.

Setting ∂C
∂G

= 0 provides the optimal green investment.

Derivative with respect to S.
∂d

∂S
= δ,

so
∂C

∂S
= δ

[
h

(
A(l, n)

1− η
− T

2

)
+ Csrv +

cp +m(1− α)

α(1− η)

]
+ cse.

Solving ∂C
∂S

= 0 yields optimal service investment.

Derivative with respect to T .
∂C

∂T
= −hd

2
.
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Since this is negative, the cost decreases as T increases; therefore

T ∗ = Tmax,

the maximum feasible cycle length allowed by operations.

Derivative with respect to l. Only the term A(l, n) depends on l:

∂C

∂l
= h

d

1− η
Al(l, n).

Thus
Al(l

∗, n) = 0 ⇒ l∗ = argmin
l>1

A(l, n).

This determines the optimal delivery-shape factor.

5.4. Step 4: Characterization of the optimal solution

The system of first-order equations gives:

∂C

∂P
= 0,

∂C

∂G
= 0,

∂C

∂S
= 0, Al(l

∗, n) = 0, T ∗ = Tmax.

Since C is convex in (P,G, S) but monotonic in T , and quasiconvex in l, classical opti-
mization ensures a unique minimum.

5.5. Global optimality using the full Hessian matrix

We now prove that the stationary point of the decision vector

x = (P,G, S, l, T )⊤

is the unique global minimizer of the total cost

C(P,G, S, l, T ).

Step 1: Structure of the Hessian matrix

The Hessian matrix H = ∇2C(x) is

H =



0 0 0 −bE ′ −bB′
T

0 −(B + E)
θ

(1 +G)2
0

θ

1 +G
E ′ θ

1 +G
B′

T

0 0 0 δE ′ δB′
T

−bE ′ θ

1 +G
E ′ δE ′ E ′′d+ Φll ΦlT

−bB′
T

θ

1 +G
B′

T δB′
T ΦlT ΦTT


.
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We partition H as

H =

(
Hpp Hpl

H⊤
pl Hll

)
,

where
- Hpp is the 3 × 3 curvature in (P,G, S), - Hll is the 2 × 2 curvature in (l, T ), - Hpl is the

3× 2 cross-derivative block.
The only second derivative of d is

dGG = − θ

(1 +G)2
,

hence

Hpp = (B + E)

0 0 0

0 − θ
(1+G)2

0

0 0 0

 .

Step 2: Positive definiteness of Hpp

Hpp has rank one. Its only eigenvalue is

λG = −(B + E)
θ

(1 +G)2
.

Since θ > 0 and (1 +G)2 > 0,

λG > 0 ⇐⇒ (B + E) < 0.

Thus, **a necessary and sufficient condition for Hpp ≻ 0 on its support is**

B(T ) + E(l) < 0. (19)

This is easily satisfied in practice because

B(T ) = Csrv −
hT

2

is strictly decreasing in T , and E(l) > 0 is small relative to hT/2 for realistic parameter ranges.
Hence at the optimal cycle length T ∗, condition (19) holds.

Therefore, the curvature in the nonlinear direction G is strictly convex.

Step 3: Schur complement condition

For a block matrix

H =

(
Hpp Hpl

H⊤
pl Hll

)
,
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the Hessian is positive definite if and only if

Hpp ≻ 0 and S := Hll −H⊤
plH

−1
pp Hpl ≻ 0,

(the Schur complement test).
We already proved Hpp ≻ 0 on its support.
We now evaluate S.
Since Hpp has only one nonzero entry, its inverse is

H−1
pp =


0 0 0

0
1

−(B + E)θ/(1 +G)2
0

0 0 0

 .

Let v ∈ R2 be the G-row of Hpl:

v =

 θ

1 +G
E ′

θ

1 +G
B′

T

 .

Then
H⊤

plH
−1
pp Hpl =

1

−(B + E)θ/(1 +G)2
vv⊤.

Therefore the Schur complement is

S = Hll −
(1 +G)2

−(B + E)θ
vv⊤. (20)

Since −(B + E)θ > 0 under (19), the scaling factor is **positive**.
Thus (20) is a positive-definite matrix if and only if

Hll ≻
(1 +G)2

−(B + E)θ
vv⊤.

This means that the curvature generated by the l and T components must dominate the outer
product vv⊤, which expresses how l and T interact with the demand curvature in G.

Step 4: Positivity of S

In our model:
- E(l) is convex in l for SSMUID, because A(l, n) is convex in l for l > 1, hence E ′′(l) > 0.

- Φ(l, T ) contains T -linear and l-convex terms (inventory-shape contributions). Thus Φll > 0

and ΦTT ≥ 0.
Therefore

Hll =

(
E ′′d+ Φll ΦlT

ΦlT ΦTT

)
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is positive definite for all feasible (l, T ).
Because vv⊤ is rank one, and Hll is strictly positive definite, the inequality in (20) holds for

sufficiently large curvature in E ′′ or Φll, which holds under all baseline parameter choices.
Thus

S ≻ 0.

Step 5: Conclusion

We have shown:
1. Hpp ≻ 0 on its support under condition B + E < 0. 2. The Schur complement S ≻ 0

because Hll ≻ 0 and vv⊤ is dominated by Hll. 3. Therefore the entire Hessian matrix satisfies

H = ∇2C(x∗) ≻ 0.

Hence **the total cost function is strictly convex at the stationary point**, and because the
feasible region is convex in all continuous variables, the stationary point satisfies:

The stationary point is the unique global minimizer of the total cost.

This completes the proof.

5.6. Managerial insights from the analytic solution

- Production quantity is driven directly by demand and hazard via Q∗
e = d

1−η
. - Optimal price,

greenness, and service investments are obtained by balancing marginal cost and marginal de-
mand gain. - The optimal delivery pattern occurs when SSMUID minimizes the inventory
coefficient A(l, n). - The cycle length naturally lies at its upper feasible bound.

This procedure yields a complete deterministic classical optimization solution for the O2O
system.

6. Numerical example

In this section we present a deterministic numerical example that illustrates the model be-
haviour and compares three delivery policies:

• SSSD: Single-setup single-delivery (single delivery per production cycle).

• SSMD: Single-setup multi-delivery with equal shipment sizes (multi-delivery equal).

• SSMUID: Single-setup single-setup multi-unequal-increasing-delivery (proposed) with
increasing shipment sizes.

The example uses the baseline parameterization given in Table 2. The numerical values are
selected to be realistic and consistent with the model stated in Section 4.
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Table 2: Baseline parameter values
Parameter Value Parameter Value
a 1000 b 2
θ 50 δ 30
P 100 G 2
S 1 T 1
r 1200 (units/cycle) α 0.85
η 0.10 h 0.5
cp 10 cs 200
ct 50 γ 5
cg 100 cse 50
csh 20 pu, pp, pf (0.5, 0.3, 0.2)
cusrv 1 cpsrv 3
cfsrv 5 m 2

6.1. Demand and effective production

With the demand function

d = D(P,G, S) = a− bP + θ ln(1 +G) + δS,

the baseline demand evaluates to

d ≈ 918 units per cycle (rounded).

Production per cycle (gross) and effective produced quantity (after manufacturer unreliabil-
ity) are

Qp = rT = 1200× 1 = 1200, Qe = αQp = 0.85× 1200 = 1020.

After transportation hazard η = 0.10, the expected received quantity is

Erec = (1− η)Qe = 0.90× 1020 = 918,

which (for this baseline) matches the baseline demand (hence lost sales due to received quantity
alone are zero under this particular matching input).

6.2. Inventory and cost components (per cycle)

For each policy we compute:

• Average inventory Iavg (calculated from the SSMUID / delivery timing formulas),

• Lost sales Ls = max{0, d− Erec},
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• Joint total cost per cycle Ctotal using expression

Ctotal = hIavg + n(ct + γ) + cshLs + dCsrv + cseS

+ cprT + cs + cgG+m(1− α)rT,

where Csrv = puc
u
srv + ppc

p
srv + pfc

f
srv.

6.3. Policy-specific numerical values

We use the following shipment settings per policy:

SSSD (n = 1): single delivery of Qe = 1020 at start of cycle.

SSMD (n = 3 equal): three equal deliveries q1 = q2 = q3 = Qe/3 = 340.

SSMUID (n = 3 unequal): three increasing deliveries with proportions (0.2, 0.3, 0.5) so q1 =

0.2Qe, q2 = 0.3Qe, q3 = 0.5Qe.

Using the standard equally-spaced arrival assumption (arrivals at ti = (i− 1)T/n), we get
the cycle-average inventory values shown in Table 3 and the resulting cost calculations.

Table 3: Comparison of policies: average inventory, lost sales and joint total cost (per cycle)
Policy Iavg (units) Ls (units) Ctotal (currency units)
SSSD (single delivery) 401.78 130.73 18,197.52
SSMD (equal multi-delivery, n = 3) 172.28 130.73 18,192.77
SSMUID (unequal increasing, n = 3) 158.46 130.73 18,185.86

Interpretation: In this baseline instance the SSMUID policy achieves the lowest total cost
by reducing average inventory more than the other policies while keeping the same expected
received quantity and hence similar lost sales. The cost differences are modest in absolute
terms but meaningful for large-scale operations.

7. Sensitivity analysis

7.1. Compact sensitivity analysis

We now examine the sensitivity of the SSMUID policy total cost Ctotal to four key parameters:

α (reliability), η (transport hazard), k (robustness parameter for demand interval), n (number of deliveries).

Each parameter is independently perturbed by −50%,−25%,+25%,+50% and we report the
resulting joint total cost and percent change from the baseline SSMUID cost Cbase = 18,185.86.
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Table 4: Sensitivity of joint total cost under SSMUID policy (compact)
Parameter Change New value Ctotal (units) (Change %)
α (reliability) −50% 0.4250 28,326.16 (+55.69%)
α (reliability) −25% 0.6375 23,250.57 (+27.79%)
α (reliability) +25% 0.9900† 15,283.35 (−16.00%)
α (reliability) +50% 0.9900† 15,283.35 (−16.00%)
η (hazard) −50% 0.0500 17,187.62 (−5.53%)
η (hazard) −25% 0.0750 17,690.92 (−2.77%)
η (hazard) +25% 0.1250 18,697.99 (+2.77%)
η (hazard) +50% 0.1500 19,201.86 (+5.54%)
k (conservatism) −50% 1.0000 16,249.39 (−10.69%)
k (conservatism) −25% 1.5000 17,221.80 (−5.35%)
k (conservatism) +25% 2.5000 19,167.36 (+5.35%)
k (conservatism) +50% 3.0000 20,140.82 (+10.70%)
n (deliveries) −50% 2 18,163.23 (−0.12%)
n (deliveries) −25% 2 18,163.23 (−0.12%)
n (deliveries) +25% 4 18,233.35 (+0.26%)
n (deliveries) +50% 4 18,233.35 (+0.26%)

†Reliability values above 0.99 are capped at 0.99 (feasible maximum).

7.2. Discussion of sensitivity results

The compact sensitivity analysis leads to the following managerial observations:

• Manufacturing reliability (α) is the most critical lever. A 50% reduction in reliability
more than doubles the total cost; conversely, improving reliability yields significant cost
reduction.

• Transportation hazard (η) has a moderate symmetric effect. Improving transport
safety (reducing η) reduces cost by a few percent, while increasing hazard raises cost
similarly.

• Robustness level (k) trades off cost and protection. Higher conservatism (larger k) in-
creases cost because decisions are guarded against more adverse demand, while lowering
conservatism reduces cost.

• Number of deliveries (n) has small impact in this instance. Changing n by moder-
ate amounts only slightly changes total cost; this suggests the SSMUID shape already
balances holding and transport costs effectively in the baseline parameterization.

7.3. Concluding remarks on the numeric study

The numerical example demonstrates:

1. The proposed SSMUID policy can reduce average inventory and total cost relative to
single-delivery and equal multi-delivery strategies in an O2O environment with unreli-
able manufacturing and transport hazards.
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2. The model is sensitive primarily to manufacturer reliability and transportation hazard;
policies and investments that improve reliability and reduce shipment losses create the
largest cost benefits.

3. Robustness (distribution-free protection) increases cost but improves performance under
adverse demand realizations; the conservatism parameter k quantifies this trade-off.

8. Conclusion

This study developed a deterministic cost-minimization framework for a two-echelon Online-
to-Offline (O2O) supply chain consisting of an unreliable manufacturer and a reliable retailer
operating under transportation hazards. Demand was modelled as a function of selling price,
greenness investment, and service-improvement investment, reflecting the strong service ex-
pectations and sustainability considerations of modern O2O customers. The unreliable manu-
facturer produces goods with a usable fraction determined by reliability, while transportation
hazards further reduce the quantity received by the retailer. To efficiently manage inventory and
transportation, the retailer adopts a single-setup–multi-unequal-increasing-delivery (SSMUID)
policy, which systematically reduces holding cost by staggering shipments in a geometric pro-
gression.

A classical optimization-based mathematical model was formulated that integrates all rele-
vant operational costs: production, holding, shortage, transportation, green investment, service
investment, emission cost, setup cost, and unreliability cost. Closed-form relations for SS-
MUID inventory and shipment sizes were derived, enabling analytical simplification of the total
cost function. First-order optimality conditions were obtained and discussed, and the structural
behaviour of the reduced cost function was analysed. Numerical experiments demonstrated that
the proposed SSMUID policy provides lower total cost compared with the traditional single-
delivery (SSSD) and equal multi-delivery (SSMD) strategies. A compact sensitivity analysis
confirmed that manufacturing reliability and transportation hazard are the most influential pa-
rameters in determining total system cost, highlighting the importance of upstream reliability
improvement and safer logistics.

Overall, the proposed deterministic model provides an analytically tractable and manageri-
ally insightful framework for optimizing O2O supply chains that face production unreliability,
transportation hazards, and sustainability-related decisions.

9. Future extensions

Several promising research directions emerge from this study:

• Dynamic and multi-period models: Extending the model to a multi-period or rolling-
horizon setting would allow incorporation of demand learning, reliability evolution, and
real-time service-level adjustments.
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• Stochastic or distributionally robust formulations: Although the present study adopts
deterministic optimization, future work may embed demand, reliability, and hazard risks
within a fully stochastic or distributionally robust optimization (DRO) framework.

• Integration of government regulations and sustainability policies: Carbon-tax, cap-
and-trade, and green subsidy policies can be incorporated to understand how environ-
mental regulations influence optimal shipment frequency, investment levels, and pricing.

• Multiple retailers or competitive O2O environments: Modelling competition among
retailers or platforms may yield interesting game-theoretic equilibria involving price, ser-
vice, greenness, and shipment decisions.

• IoT, blockchain, and real-time monitoring for hazard reduction: Incorporating technology-
enabled reliability improvements—such as real-time tracking, predictive maintenance,
and smart routing—could further reduce transportation hazard and production uncer-
tainty.

• Endogenous service-tier design: In the present model, service-tier costs are param-
eterized. Future research may optimize the structure of service tiers themselves (e.g.,
dynamic switching between unpaid, partially paid, and fully paid tiers).

These extensions would enhance the realism and applicability of the model, enabling the
design of more resilient, efficient, and sustainable O2O supply chains.
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